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Abstract. Madagascar is one of the most burned regions in the world, to the point that it has been called the ‘Isle of fire’ or 17 

the ‘Burning Island’. An accurate characterization of the burned area (BA) is crucial for understanding the true situation and 18 

impacts of fires on this island, where there is an active scientific debate on how fire affects multiple environmental and 19 

socioeconomic aspects, and how fire regimes should be in a complex context with differing interests. Despite this, recent 20 

advances have revealed that BA in Madagascar is poorly characterised by the currently available global BA products. In this 21 

work, we present, validate, and explore a BA database at 20 m spatial resolution for Madagascar covering the period 2016-22 

2022. The database was built based on 75,010 Sentinel-2 images using a two-phase BA detection algorithm. The validation 23 

with independent long-term reference units showed Dice coefficients ≥79%, omission errors ≤24%, commission errors ≤18%, 24 

and a relative bias ≥-8%. An intercomparison with other available global BA products (GABAM, FireCCI51, C3SBA11, or 25 

MCD64) demonstrated that our product (i) exhibits temporal consistency, (ii) represents a significant accuracy improvement, 26 

as it reduces BA underestimations by about eightfold, (iii) yields BA estimates four times higher, and (iv) shows enhanced 27 

capability in detecting fires of all sizes. The observed BA spatial patterns were heterogeneous across the island, with 32% of 28 
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the grasslands burning annually, in contrast to other land cover types such as the dense tropical forest where less than 2% 29 

burned every year. We conclude that the BA characterization in Madagascar must be addressed using imagery at spatial 30 

resolution higher than MODIS or Sentinel-3 (≥250 m), and temporal resolution higher than Landsat (16 days) to deal with 31 

cloudiness, the rapid attenuation of burn scars signals, and small fire patches.  32 

1 Introduction 33 

Fire is a pervasive disturbance that has shaped the distribution of terrestrial biomes, plant evolution and atmospheric 34 

composition for millions of years (Lasslop et al., 2019; Kelly et al., 2020). Nowadays, landscape fires affect a vast extent of 35 

Earth’s surface, with around 5% of ice-free land burning annually (van der Werf et al., 2017; Chen et al., 2023; Fernández-36 

García & Alonso-González, 2023). Despite being a natural and ancient force, contemporary landscape fires are increasingly 37 

driven by human activity, and thus are a major element contributing to our rapidly changing world, reshaping fire-prone 38 

ecosystems, as well as those that have historically been less prone to fire (Kelly et al., 2020). This context of change poses a 39 

global challenge for understanding how fire might affect numerous spheres of global interest. Notably, landscape fires are 40 

intricately linked to several of the United Nations Sustainable Development Goals (SDGs), such as Life on Land, Climate 41 

Action, Good Health and Well-being, No Poverty, or Zero Hunger, among others (Martin, 2019). Thus, given the far-reaching 42 

implications of fire, it is imperative to have accurate spatio-temporal characterizations of this phenomenon available to a wide 43 

range of end users (Pereira, 2019). This need is particularly pronounced in regions where fire regimes are rapidly changing, 44 

and where the achievement of the mentioned SDGs is further hindered by socio-economic limitations, as it is the case of many 45 

regions in tropical Africa (Andela et al., 2017; Fernández-García & Alonso-González, 2023; Omisore, 2018).  46 

 47 

In tropical Africa, the island nation of Madagascar stands for its unique biodiversity, with more than 90% of its species found 48 

nowhere else (Antonelli et al., 2022; Goodman, 2022a). At the same time, it ranks among the most burned places on Earth 49 

(Andela et al., 2017; van der Werf et al., 2017; Fernández-García and Alonso-González, 2023), with recent studies estimating 50 

an annual burned area (BA) between 121,000 and 147,000 km2, corresponding to 21-25% of the island’s land (Fernández-51 

García & Kull, 2023). In Madagascar, fire serves multiple overlapping and sometimes competing interests across a diversity 52 
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of landscapes and vegetation types. While many locals use fire for pasture management, crop field preparation or pest and 53 

wildfire control, some policy makers and conservationists criticise fires for contributing to deforestation, soil erosion and risks 54 

to private properties (Kull, 2002; Kull, 2004). As a result, governments have periodically tried to eradicate or minimise 55 

landscape burning, but these efforts have been met with resistance from rural populations who rely on fire for their livelihoods 56 

(Kull, 2004). In addition, the scientific community identifies anthropogenic fire as a major factor in Madagascar’s landscape 57 

transformation and biodiversity loss, particularly within forested areas. However, most tree loss occurs in the absence of large-58 

scale fires (Phelps et al., 2022) urging the development of new fire products for the investigation on the role of small-scale 59 

fires (Ralimanana et al., 2022). There is also controversy regarding the open biomes - notably grasslands - that dominate the 60 

island and are the main location of fires. Some authors have characterised them as degraded ecosystems (Burns et al., 2016), 61 

while others view them as ancient representatives of the island’s biodiversity, asserting that fire is an integral part of them 62 

(Bond et al., 2008; Solofondranohatra et al., 2020). Apart from this, fire has been identified as a suitable management tool in 63 

the open biomes, as well as in the immediate vicinity of forest areas where fire-associated risks can be mitigated by specific 64 

fire regimes (Bloesch, 1999; Kull, 2004; Ralimanana et al., 2022). 65 

 66 

Despite the interest in understanding and addressing the challenges posed by fires in Madagascar, recent advances in remote 67 

sensing and modelling have revealed that the BA in this island has been poorly characterised over time (Fernández-García and 68 

Kull, 2023). In Madagascar, as in many regions worldwide, the assessment of BA has traditionally relied on coarse resolution 69 

sensors (Andela et al., 2017; Frappier-Brinton and Lehmann, 2022; Phelps et al., 2022; Ralimanana et al., 2022). Among these, 70 

the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument stands out as one of the most extensively used 71 

sensors, being the basis for the North American Space Agency (NASA) standard BA product MCD64A1 (Giglio et al., 2018), 72 

as well as the FireCCI51 from the European Space Agency (ESA) (Lizundia-Loiola et al., 2020), with spatial resolutions of 73 

500 m and 250 m, respectively. Other operational BA products include the C3SBA11 (Lizundia-Loiola et al., 2021), with a 74 

spatial resolution of 300 m, produced under the Copernicus Climate Change Service of the European Commission and based 75 

on the Ocean and Land Colour Instrument (OLCI) on board Sentinel-3. GABAM (Long et al., 2019), another global BA 76 

product, which is based on Landsat imagery at higher spatial resolution (30 m) but with lower temporal resolution (16 days 77 
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when using one sensor), provides similar BA estimates than FireCCI50 (Long et al., 2019). Despite this reassuring consistency 78 

in BA estimates of the aforementioned databases, validation exercises (Padilla et al., 2014; 2015; Boschetti et al., 2019; 79 

Franquesa et al., 2022a; 2022b), along with the start of the Sentinel-2 mission in 2015 (which offers spatial resolution of 20 m 80 

for most bands, and a temporal resolution of 5 days when combining its two twin sensors, both resolutions higher than Landsat), 81 

have provided groundbreaking estimates that highlight the limitations of all previously mentioned products. In this sense, 82 

Roteta et al. (2019) developed the FireCCISFD11 database for sub-Saharan Africa in 2016, which revealed that the BA was 83 

80% higher than previously reported by the MCD64A1. This was mainly due to small fires (<100 ha) which were rarely 84 

detected by MODIS (comprising only 5% of the MODIS BA) but contributed to 41% of the BA in FireCCISFD11. Similar 85 

results were found by Chuvieco et al. (2022), who developed a second version of this product, FireCCISFD20 for the year 86 

2019. In the case of Madagascar, previous analysis made by Fernández-García and Kull (2023) indicates that the BA estimates 87 

from Sentinel-2 in 2016 are around four times higher than those from MODIS and BA estimations from refined BA data 88 

showed similar differences for 2000, 2005, 2010 and 2020. Notwithstanding the urgency of transitioning towards the use of 89 

higher-resolution sensors for a more accurate characterization of BA, no Sentinel-2 or finer BA product currently exists for 90 

Madagascar, other than those for the years 2016 and 2019. 91 

 92 

The variety and differences in performance among BA products indicate that BA retrieval is not a trivial task. Firstly, BA 93 

detection must cope with the uniqueness of each site in terms of spectral signature, as well as with a wide variety of burning 94 

conditions (Chuvieco et al., 2019). To deal with these challenges, most products are based on temporal comparisons of 95 

reflectance values, some of which include thermal anomalies at coarse resolution (van der Werf et al., 2017; Giglio et al., 2018; 96 

Chuvieco et al., 2018; Lizundia-Loiola et al., 2020). When using Sentinel-2 imagery, the same approach has been used (Roteta 97 

et al., 2019), although some researchers have recommended excluding data from coarse resolution sensors and focusing solely 98 

on the higher-resolution data provided by Sentinel-2 MultiSpectral Instrument (MSI) (Roy et al., 2019). One approach entirely 99 

based on finer imagery is the use of supervised multitemporal image analysis. This approach has been used, for example, to 100 

obtain BA reference data for validation purposes (Boschetti et al., 2019; Roteta et al., 2021a; Franquesa et al., 2020). Among 101 

these methods, a novel option is the use of two-phase algorithms. In the first step, these algorithms create a seed region 102 
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composed of pixels with a high probability of being burned. The second phase consists of expanding the seed region by 103 

incorporating neighbouring pixels that meet certain criteria, such as having similar spectral characteristics and being spatially 104 

connected to the seed region (Bastarrika et al., 2014; Roy et al., 2019; Lizundia-Loiola et al., 2020; Roteta et al. 2021a; Sali et 105 

al., 2021). Two-phase algorithms can be effective at detecting complex burned patterns, such as those found in Madagascar, 106 

and they are expected to provide more accurate results than simple pixel-based classifications by reducing commission errors 107 

due to the use of seeds (Roteta et al. 2021a). 108 

 109 

Once a BA product is developed, it is critical to assess its accuracy to inform end-users about the data quality (Boschetti et al., 110 

2009; Chuvieco et al., 2019; Franquesa et al., 2022a). This process, known as validation, can be challenging and time-111 

consuming due to the scarcity of available reference data of higher reliability than the products being validated (Roy et al., 112 

2008; Franquesa et al., 2020). Validation typically involves a spatial comparison of the BA products with the reference BA, a 113 

process often referred to as spatial validation. On the other hand, the product’s ability to accurately detect the time of burning, 114 

is also relevant for some applications and its assessment is referred to as temporal validation. Both spatial and temporal 115 

validation assess different errors, but temporal errors often affect the estimates of the spatial assessments, a fact that can be 116 

limited with the use of long temporal reference units (Franquesa et al., 2022b). When validating Sentinel-2 products, acquiring 117 

long temporal reference units at higher spatial resolution than the product to be validated is currently infeasible using non-118 

commercial satellite imagery (Chuvieco et al., 2019), so previous studies have generated independent and higher-quality 119 

reference BA data by comparing subsequent pairs of Sentinel-2 images and employing expert human-based image 120 

interpretation (Roteta et al., 2019). 121 

 122 

In this work, we present a new BA database for Madagascar covering the period 2016-2022 based on Sentinel-2 imagery 123 

(MGBAS2). Specifically, (i) we described how the database was built; (ii) we performed a spatial validation of the product 124 

using a pioneering approach of long temporal reference units; (iii) we performed a temporal validation of the product by 125 

comparing it with the VIIRS hotspots; (iv) we compared our database with other available BA products to show its interannual 126 
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consistency, as well as its outperformance over Landsat, Sentinel-3 and MODIS derived BA data; and (v) we provide new 127 

insights on Madagascar’s BA based on the presented database. 128 

2 Materials and methods 129 

The methods section in this work comprises five different blocks (Fig. 1). First, we explained how the MGBAS2 product was 130 

built with a procedure based on BAMT v1.7 (Roteta et al., 2021a). Second, we performed a spatial validation with new 131 

independent long-temporal reference units as recommended by Franquesa et al. (2022b) and analogous methods to those used 132 

to validate similar products (Chuvieco et al., 2022). These reference units were made publicly available in the validation burned 133 

area (BA) database BARD (https://doi.org/10.21950/YYZNNN; Franquesa et al., 2023). Third, we accomplished a temporal 134 

validation based on VIIRS hotspots to identify the timing error in BA detection. Fourth, we compared the BA and accuracy of 135 

MGBAS2 with other available BA data from several satellites. Lastly, we computed some direct outputs from our product, 136 

including fire frequency, seasonality, and mean annual fraction of burned land by ecoregions and land cover classes. 137 

 138 

 139 
Figure 1: Methodology overview. 140 

 141 

https://doi.org/10.21950/YYZNNN
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2.1. Building the MG-BAS2 database 142 

The BA was identified following a change detection approach, one of the most utilised for BA detection (Chuvieco et al., 143 

2019; Liu et al., 2020; Gaveau et al., 2021). This approach is based on comparisons between the pre- and post-burn reflectance 144 

values. A total of 75,010 Harmonized Sentinel-2 1C scenes, spanning from 31 August 2015 to 31 December 2022, were used 145 

to build temporal composites with six reflectance bands: blue (B2), green (B3), red (B4), near infrared (B8A), and the two 146 

short wavelength infrareds (B11, B12). These were subsequently compared by pairs, each pair representing pre- and post-burn 147 

conditions. Sentinel-2 scenes comprised the 2A sensor for the entire study period along with the 2B sensor since March 2017. 148 

The Level-1C (top of atmosphere reflectance; Sentinel-2 MSI User Guide, 2023) was preferred over the Level-2A for temporal 149 

consistency, and to avoid the already reported noise included by the Sen2Cor correction in the Level-2A scenes (Roteta et al., 150 

2021a). The composites were built for periods of four months by selecting land quality observations with the most prominent 151 

signals of BA. Specifically, we created a mask to omit clouds, cloud shadows and bright surfaces. We did this based on bitwise 152 

operations, first masking bits 10 (cloud) and 11 (cloud shadows) of the QA60 band, as well as pixels with values greater than 153 

1500 in the B1 band. From these quality observations, we captured the lowest Normalized Burn Ratio Index (NBR) values, 154 

which ensures maintaining burned signals. Four-month periods (breakpoints on 30 April, 31 August, and 31 December) were 155 

selected to maximise the probabilities of getting cloud-free images while keeping a low probability of repeated burning in 156 

subsequent composites.  157 

 158 

Once the composites were built, a minimum of 10 training burned and unburned polygons (>40 ha each) were randomly 159 

distributed, with at least two polygons per major land cover type (forest, grassland, cropland, sparse vegetation/bare soil, and 160 

water bodies). The allocation of the mentioned training polygons and distribution was ensured in the proper locations by visual 161 

inspection of RGB false colour composites (Sentinel-2 bands B12, B8A, B4) from the first (pre-fire) and second (post-fire) 162 

temporal composites and their difference. The training polygons were used to train the BAMT v1.7 random forest algorithm 163 

(Roteta et al., 2021a). This algorithm uses the six spectral bands (B2, B3, B4, B8A, B11 and B12) and three indices: the 164 

Normalized Difference Vegetation Index (NDVI), the NBR, and the Enhanced Normalized Burn Ratio (NBR2). These indices 165 

were computed for both the post-fire composite and for the difference between the pre- and post-fire composites. The spectral 166 
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bands, combined with these spectral indices, served as the input for the random forest algorithm. This process resulted in a BA 167 

probability map that allows the identification of seed pixels (i.e., pixels with a high probability of being burned). The seeds 168 

and probability images resulting from each image-composite pair comparison were visually inspected in the Google Earth 169 

Engine platform, typically zooming in to a scale of 1:20,000. The visual inspection involved comparing the mapping results 170 

(seeds and probability images) with burned patches identified by two expert interpreters. The comparison was based on RGB 171 

false-color composites (B12, B8A, B4) of the two scenes. Visual inspections were carried out in a minimum of 10 regions, 172 

each covering 60 km². These regions were chosen independently from the training areas (i.e., regions with training polygons 173 

were avoided) and were randomly selected across the mapping area (i.e., Madagascar), encompassing the five major land cover 174 

types mentioned above. The training process was repeated with further training areas until satisfactory results were obtained, 175 

that is, no classification errors were visually detected by the expert interpreters. Then, all those pixels with an equal or greater 176 

than 50% probability of being burned, and that were spatially connected to at least one seed, were classified as burned. The 177 

date of observation for the pixel in the post-burn composite (minimum NBR in the four-month period) was retained for all the 178 

pixels classified as burned. The entire protocol was implemented in Google Earth Engine using as reference the code provided 179 

by Roteta et al. (2021a). 180 

 181 

2.2. Spatial validation analyses 182 

The reference BA databases (Franquesa et al., 2020) were explored and the scarcity of enough reference BA data for a robust 183 

validation of the developed product in Madagascar was confirmed, with no more than a single validation area per year. 184 

Consequently, we produced and made publicly available (BARD database, Franquesa et al., 2023) our own independent 185 

reference BA dataset for two years in Madagascar (2021 and 2019). The year 2021 was randomly selected, and 2019 was 186 

selected for convenience due to the availability of several BA products used in this study for intercomparisons. The validation 187 

procedure followed the recommended 'good practices' for land cover validation procedures, which involves several steps: 188 

implementing a probability-based sampling design, formulating a response design that encompasses the generation of reference 189 

data, and conducting the analysis to derive the accuracy metrics (Olofsson et al., 2014). In relation to the reference data, 190 
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Olofsson et al. (2014), state that if the validation is conducted using the same source material, the development of reference 191 

data of higher quality than the map classification can be achieved by using more accurate classification methods than those 192 

used in the map. Likewise, we have considered recent advances on BA validation (Chuvieco et al., 2022; Franquesa et al., 193 

2022b) that show the need of using randomization (Olofsson et al., 2014) as well as long temporal reference units to reduce 194 

the impacts of dating errors (Franquesa et al., 2022b). Moreover, we found the most suitable approach to be the computation 195 

of BA for each comparison between consecutive pairs of Sentinel-2 scenes, repeating the process over the longest possible 196 

period. This method offers higher quality data at 20 m spatial resolution than the one reported by our product based on four-197 

months mosaics and thus is appropriate for validation (Roteta et al., 2021a; Chuvieco et al., 2022; Franquesa et al., 2022b). 198 

Accordingly, our validation protocol involved the following steps: 199 

 200 

• Spatial definition and selection of reference units: the sampling units for validation purposes were spatially defined 201 

based on the tessellation of Sentinel-2 MSI images. All the Sentinel-2 tiles covering the island of Madagascar were 202 

selected, a total of 95. To increase the total population of sampling units and facilitate the reference BA retrieval task, 203 

each tile was divided into four smaller units of approximately 50 x 50 km. To each tile subdivision, we added a 204 

sequential numeric index to the tile identifier (e.g., 38JMT_1). Then, following Stroppiana et al. (2022), all sampling 205 

units located in different Sentinel-2 orbits and UTM zones were discarded, obtaining a total population of 242 206 

sampling units (Fig. 2). We applied a stratified random sampling with one level of stratification based on the amount 207 

of fraction of land burned in each sampling unit, according to our MGBAS2 product. First, we compute the percentage 208 

of burned land in each sampling unit, and then units were stratified into two strata (low and high proportion of burned 209 

land) based on a threshold set in the 80th percentile of the BA proportion of the total population. Then, we randomly 210 

selected a total of four and two sample units in the low and high stratum, respectively. This sampling was performed 211 

for the randomly selected year 2021 and the same sample units were used for the year 2019. The selected sample 212 

units were the 38JMT_4 (0.47% of burned land according to MGBAS2 for 2021), 38KQA_132 (4.1%), 38KMC_38 213 

(9.8%), and 38KMG_54 (30.4%) for the low proportion of burned land stratum, and 38KPV_127 (39.5%) and 214 

38KPE_111 (66.7%) for the high proportion of burned land stratum (Fig. 2).   215 
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 216 

• Temporal definition of reference units: for the definition of the temporal length of our reference BA units we followed 217 

the criteria of reaching a compromise between the minimization of the temporal difference between the acquisition 218 

dates of pairs of images and the maximisation of the temporal length of the unit (temporal extent of the set of multiple 219 

scenes used for pair comparisons) (Franquesa et al., 2022b). Both criteria are highly relevant, but one might constrain 220 

the other. On the one hand, spectral signals that enable the identification of BA from satellite platforms might 221 

disappear quickly, particularly in grassy and savannah biomes and under wet and productive conditions (Melchiorre 222 

and Boschetti, 2018). On the other hand, the length of the validation unit is essential for spatial validations in order 223 

to mitigate the impact of temporal errors on spatial accuracy metrics. To optimise both criteria we first identified all 224 

Sentinel-2 MSI scenes with a cloud clover less than 15% for the whole year (2019 and 2021), and then we identified 225 

pairs of consecutive images with a temporal maximum difference of 16 days. When the difference between 226 

consecutive pairs was longer than 16 days, the image composites (B12, B8A, B4) and their NBR differences were 227 

visually inspected to guarantee that all the potential fire scars were easily identifiable, using as reference the visual 228 

evidence of former scars in the newest scene. When there was not a clear persistence of the BA signal, the selection 229 

procedure was re-started from this date onwards. We set the minimum length of the reference units to 40 days. The 230 

long temporal reference units obtained ranged between 40 and 209 days for 2019 and between 40 and 225 days for 231 

2021.  232 

 233 

• Computation of long temporal reference BA data: the reference BA data was computed from the spatially and 234 

temporally defined reference units by applying the protocol described by Roteta et al. (2021a) and similar to the 235 

validation of the ESA FireCCISFD20 product (Chuvieco et al., 2022). This is providing training polygons, applying 236 

the BAMT v1.7 random forest algorithm, supervising the resulting classification and finally generating a BA layer 237 

for each consecutive Sentinel-2 image pair. Then, all the resulting perimeters were combined to generate an ESRI© 238 

shapefile with the reference BA data for each of the reference units. 239 

 240 
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• Accuracy analysis: we calculated a confusion matrix for each of the six reference units from the areas of agreement 241 

and disagreement obtained by crossing the reference BA data with our BA product. Then, we calculated the Dice 242 

coefficient, omission error, commission error, and relative bias (formulas available in Padilla et al., 2015 and 243 

Franquesa et al., 2022b). The unobserved regions in the BA product were considered as unburned areas when 244 

computing the accuracy statistics, whereas the unobserved areas in the reference BA data were excluded from the 245 

analysis. Global accuracy estimates were inferred for the assessed years (2019 and 2021) using a stratified ratio 246 

estimator (Cochran, 1977). 247 

 248 

 249 
Figure 2: Total population of sampling units defined for validation purposes by strata (low and high fraction of burned land), and 250 
location of the six reference units selected for the spatial validation. 251 

 252 

2.3. Temporal validation analyses 253 

The temporal reporting accuracy was assessed by conducting a comparative analysis of the product with the dates of VIIRS 254 

hotspots (VNP14IMGML) between 2016 and 2021, using a methodology consistent with previous research (Boschetti et al., 255 

2010; Giglio et al., 2018; Lizundia-Loiola et al., 2020; Roteta et al., 2019; Roteta et al., 2021b; Chuvieco et al., 2022). 256 
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Specifically, we compared each VIIRS hotspot date with the date of burning in the MGBAS2 product in the same location, 257 

and we calculated the percentage of cases in which both products matched with differences <1, <5, <10, <15, <20 and <50 258 

days. 259 

 260 

2.4. Intercomparison with other products  261 

We have conducted intercomparisons of MGBAS2 with other products to complement our spatial validation and demonstrate 262 

the temporal consistency of our product as well as to showcase the advancements it represents over the existing data. The 263 

intercomparisons were made with the FireCCISFD (FireCCISFD11 and FireCCISFD20), GABAM, ESACCI51, C3S11 and 264 

MCD64 which represent BA from different satellite platforms, sensors, and resolutions.  265 

 266 

• FireCCISFD is the Small Fire Database product from the European Space Agency (ESA) Climate Change Initiative 267 

(CCI). The FireCCISFD is available for Sub-Saharan Africa for the years 2016 (FireCCISFD11; Roteta et al., 2019) 268 

and 2019 (FireCCISFD20; Chuvieco et al., 2022). FireCCISFD11 and FireCCISFD20 are primarily based on 269 

Sentinel-2 MSI sensors at 20 m spatial resolution.  The algorithms used to build FireCCISFD11 and FireCCISFD20 270 

are the same but the first uses MODIS active fires (1000 m spatial resolution) and Sentinel-2A imagery, whereas 271 

FireCCISFD20 uses VIIRS active fires (375 m spatial resolution) and both A and B Sentinel-2 imagery (Chuvieco et 272 

al., 2022).  273 

 274 

• GABAM (Long et al., 2019) is a global product based on all the Landsat images available on GEE platform for the 275 

period 1984-2020 with a spatial resolution of 0.00025 degree (approximately 30 m). The revisit period for each 276 

Landsat platform is 16 days, but the years when more than one platform is available, the combined revisit period 277 

decreases. In this work we used the only available version (GABAM V1) (Long et al., 2021). 278 

 279 
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• FireCCI51 (Lizundia-Loiola et al., 2020) has been developed in the framework of the Climate Change Initiative (CCI) 280 

and is the reference global BA product from the European Space Agency (ESA) until 2020. It is based on MODIS 281 

imagery incorporating some of bands at 250 m, conferring that final spatial resolution to the product. 282 

 283 

• C3SBA11 (Lizundia-Loiola et al., 2021) offers continuity to the FireCCI51 product since 2017 adapting the BA 284 

detection procedures to the Sentinel-3 OLCI on board of the twin satellites (A and B). Sentinel-3 OLCI presents 285 

similar spatial and temporal resolution than MODIS, with a 300 m pixel size and a revisit of <2 days when Sentinel-286 

3 A and B platforms are combined. 287 

 288 

• MCD64 (Giglio et al., 2018) is the NASA standard BA product, which has been produced since 2001 from MODIS 289 

imagery at 500 m spatial resolution. MODIS instruments are on board two satellite platforms (Terra and Aqua) 290 

resulting in a combined revisit period of around 1 day. In this work we used the pixel version MCD64A1 (collection 291 

6.1) and the gridded product MCD64CMQ. 292 

 293 

The FireCCISFD, GABAM, FireCCI51, C3SBA11 and MCD64 were compared with MGBAS2 in different ways. First, we 294 

calculated the spatial accuracy metrics as described in Section 2.2, performing spatial validation analyses for the formerly 295 

existing products using the six selected reference units and validation periods in 2019 and 2021. The use of same reference 296 

sites and periods for validating a set of BA products minimise differences due to sampling so the accuracy metrics are totally 297 

comparable. The GABAM product was excluded from this analysis as it does not provide dates of burning. Second, we studied 298 

the temporal evolution of the land burned in Madagascar since 2016 normalising the BA in the products to the BA detected in 299 

the MGBAS2 (i.e., MGBAS2 BA was set to 100%). Third, for the year 2019, the only one where all the products were 300 

available, we performed a comparison of the number of fires (i.e., patches with different burning dates) by fire size class. The 301 

selected fire size classes were <0.25 km2, 0.25 to <1.25 km2, 1.25 km2 to <2.5 km2, and ≥2.25 km2 as in the analysis of the 302 

FireCCISFD20 database (Chuvieco et al., 2022). Also, for 2019 we aggregated the area burned in each product at 0.25-degree 303 

(or we acquired the gridded products when available), and then we computed univariate linear regression models with each of 304 
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the former products (independent variable) and MGBA2S2 (dependent variable), showing the R2, bias and root mean square 305 

error (RMSE) statistics. All the BA and fire size calculations were made in the sinusoidal equal area projection.  306 

 307 

The FireCCISFD pixel products (product names FireCCISFD11 and FireCCISFD20) were acquired from the ESA CCI Open 308 

data portal (https://climate.esa.int/en/odp/), the GABAM product was acquired from the Harvard Dataverse available at 309 

https://doi.org/10.7910/DVN/3CTMKP, FireCCI51 and C3SBA11 pixel and gridded products were acquired from Copernicus 310 

Climate Data Store (https://cds.climate.copernicus.eu/). The MCD64 product was acquired at the pixel level (product name 311 

MCD64A1) from the NASA Earth Data Server (https://www.earthdata.nasa.gov/) and the gridded version (product name 312 

MCD64CMQ) for intercomparisons from the University of Maryland server (sftp://fuoco.geog.umd.edu). The same server 313 

from the University of Maryland was used to download VIIRS active fires (product name VNP14IMGML). 314 

 315 

2.5. Calculation of direct outputs 316 

The MGBAS2 product was used to calculate some direct outputs for the whole of Madagascar. For instance, we calculated the 317 

number of times that each pixel burned between 2016 and 2022. In addition, we calculated the proportion of burns occurring 318 

within the fire season at the pixel level between 2016 and 2022. To do this, we defined the fire season for Madagascar as those 319 

months with a mean Fire Weather Index (FWI) higher than 17 (from June to November, inclusive), which has been used as a 320 

threshold to define high fire risk (Fernandes, 2019). The FWI mean monthly values were extracted from the Merra2 321 

IMERG.FINAL.v6 available at the NASA Center for Climate Simulation (NCCS) for the period 2001–2019. We also 322 

calculated the proportion of burned land within each commune (a Malagasy administrative level) for the period 2016–2022, 323 

the proportion of burned land by ecoregions (Olson et al., 2001) between 2016 and 2022, and by land cover type after 2019 as 324 

we used the GLAD land cover map of 2019 (Hansen et al., 2022) to identify the land cover classes. 325 
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3 Results 326 

3.1. Product presentation  327 

The MGBAS2 product covers the period from 1 January 2016 to 31 December 2022, and is distributed in an ESRI© shapefile 328 

format for periods of four months. Each shapefile covers the whole of Madagascar. The attribute field named “BurnDate” 329 

includes the date of burning in a Year-Month-Day format (YYYYMMDD) (Fig. 3). This field might have zero values, 330 

indicating areas that were masked due to the lack of land quality observations. The area without any information in the shapefile 331 

was identified as unburned. The spatial resolution corresponds to a 20 m pixel size. A visual example of the MGBAS2 product 332 

is shown in Fig. 3. 333 

 334 

 335 
Figure 3: Left panel: example of a Sentinel-2 false colour composite (RGB: B8, B4, B3) acquired on 26 August 2021, with burned 336 
areas represented in black and grey tones; right panel: MGBAS2 product between 1 May and 26 August 2021 coloured by the date 337 
of sensing of burned area in the panel on the right on the same Sentinel-2 false colour composite. The scale is represented as pixel 338 
sizes, including the pixel size of the MGBAS2 product (20 m) and of other BA products (FireCCISFD 20 m, GABAM 30 m, 339 
FireCCI51 250 m, C3SBA11 300 m and MCD64A1 500 m).  340 
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3.2. Spatial validation  341 

The spatial validation of our product showed Dice coefficients of 78.85% and 83.61% for the years 2019 and 2021, 342 

respectively, where 0% indicates no overlap and 100% indicates total similarity between MGBAS2 and the reference data. 343 

The results also showed burned area (BA) underestimations of around 8% for both years, omission errors of 24.26% for 2019 344 

and 19.81% for 2021, and smaller commission errors of 17.77% and 12.63% for 2019 and 2021, respectively (Table 1). 345 

 346 
Table 1: Global accuracy metrics (± standard error) of the spatial validation of MGBAS2, FireCCISFD20, FireCCI51, C3SBA11 347 
and MCD64A1 products for Madagascar. 348 

 349 

BA product Year Dice coefficient 

(%) 

Relative bias 

(%) 

Omission error 

(%) 

Commission error 

(%) 

MGBAS2 2019 78.85 ± 4.82 -7.89 ± 4.41 24.26 ± 7.89 17.77 ± 5.09 

 2021 83.61 ± 3.86 -8.20 ± 6.97 19.81 ± 6.57 12.65 ± 1.04 

FireCCISFD20 2019 84.12 ± 1.48 -0.90 ± 2.79 16.27 ± 2.51 15.48 ± 0.91 

FireCCI51 2019 36.66 ± 4.39 -64.47 ± 4.17 75.16 ± 3.72 30.08 ± 3.04 

C3SBA11 2019 30.19 ± 3.10 -73.77 ± 2.54 80.94 ± 2.54 27.24 ± 2.52 

 2021 21.15 ± 8.99 -82.06 ± 7.71 87.53 ± 6.10 30.49 ± 6.70 

MCD64A1 2019 32.50 ± 5.18 -71.90 ± 6.04 79.18 ± 4.29 25.93 ± 1.80 

 2021 26.18 ± 6.00 -79.52 ± 5.31 83.95 ± 4.34 25.28 ± 2.20 

 350 

3.3. Temporal validation 351 

Comparing the BA detection dates with VIIRS hotspots we found that MGBAS2 was able to detect 4.59 ± 0.53% of VIIRS 352 

hotspots within the same day, and a 51.86 ± 4.19% in less than 20 days difference. If we expand the period of analysis to 50 353 

days, we observe that 82.11 ± 2.80 of the VIIRS hotspots have a corresponding BA in the MGBAS2.  354 
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 355 
Figure 4: Frequency of VIIRS hotspots detected by MGBAS2 within different time frames. 356 

3.4. Intercomparison 357 

The intercomparison of accuracy metrics among BA products in 2019 and 2021 revealed similar performance among the 358 

Sentinel-2-based products (MGBAS2 and FireCCISFD20), which were by far more accurate than the other products based on 359 

different sensors (Table 1). The Sentinel-2 products reached Dice coefficients ≥78.85% whereas for the rest were ≤36.66%. 360 

The differences in relative biases were also remarkable with the Sentinel-2 based products showing underestimations up to 361 

8.20% and the other products detecting at least 64.47% less BA than the reference data (i.e., MGBAS2 reduced BA 362 

underestimations by about eightfold). The omission errors of Sentinel-2 based products were around four times less than the 363 

rest, and the commission errors were approximately the half. Results also showed some differences among the coarse-364 

resolution products (FireCCI51, C3SBA11 and MCD64A1), the FireCCI51 being the most accurate. 365 

 366 

The accuracy analysis for the years 2019 and 2021 (with long temporal reference units) was supplemented with an analysis of 367 

the annual BA detected by each product relativized to the BA detected in MGBAS2. This offered an annual comparative 368 

overview from 2016 onwards and provided insights on the Landsat-based BA product that was not included in the accuracy 369 

analyses because it lacks burning dates. Results showed that the difference in BA estimates between the Sentinel-2 based 370 

products and the rest was consistent over time and revealed that GABAM performed similarly to coarse-resolution products 371 

in terms of total annual BA for Madagascar. Thus, all the products not based on Sentinel-2 imagery detected at least four times 372 

less BA than those based on Sentinel-2 imagery, with the BA in FireCCI51 (the non-Sentinel-2 product exhibiting the best 373 

performance) being 23.25% of the value detected in MGBAS2 (Fig. 5A). 374 

 375 
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Results showed that Sentinel-2 based products not only detected more BA but also a higher number of fires (Fig. 5B). Sentinel-376 

2 based products detected more fires globally and for all the analysed fire size categories, but the main difference was found 377 

in the number of fires with small size (<0.25 km2). Comparing the MGBAS2 with the FireCCISFD20 we found that the 378 

FireCCISFD20 detected more small fires (0 to <1.25 km2) whereas the MGBAS2 detected more large fires (≥2.5 km2), which 379 

can be attributed to the assignation of burned patches close in time to a same date in the compositing procedure, when NBR 380 

values did not decay rapidly. Another difference observed between Sentinel-2 products is the large extent of unmapped regions 381 

of the FireCCISFD20 for some months, particularly from January to April (Fig. S2), which on the contrary are mapped by 382 

MGBAS2.  383 

 384 

The correspondence in global estimates between the Sentinel-2 products presented above was made extensive to a spatial 385 

correspondence, as the linear models performed for 2019 with the MGBAS2 and FireCCISFD20 estimates of the percentage 386 

of burned land at 0.25º showed a close relationship (R2 = 0.89; bias = 0.03%) (Fig. 5C). In contrast, the relationships with 387 

GABAM, FireCCI51, C3SBA11 and MCD64 gridded data for 2019 were weaker (R2 ≤ 0.51) and biased (bias ≥ 18.41) in the 388 

line with the reported relative biases, commission, and omission errors (Table 1). Results of the regressions for the rest of years 389 

are similar to those found for 2019, and available in Fig. S1. 390 

 391 
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 392 

Figure 5: Intercomparison between MGBAS2 and other available BA products. A: temporal evolution of the fraction of annual 393 
burned land relativized to the fraction detected by MGBAS2. B: distribution of fires (burned area patches) by fire size classes. C: 394 
linear regression models between the fraction of annual burned land detected by MGBAS2 and other available BA products using 395 
data aggregated at 0.25º grids. 396 

 397 

3.5. Direct outputs 398 

We found that between 20 and 30% of Madagascar’s land burns every year, averaging an annual BA of 145,295 km2 (Table 399 

S1). The number of times that the same area burned between 2016 and 2022 ranged from zero to 14 according to MGBAS2, 400 

although pixels that burned more than seven times were scarcely represented (<0.40% of Sentinel-2 pixels). Specifically, 401 

43.42% of Sentinel-2 pixels did not burn during the whole period, and a gradual decrease was observed from areas burned 402 
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once (16.90%) to those burned seven times (3.46%), with the recurrence of fires being inversely proportional to the burned 403 

extent (Fig. 6A). The most frequently burned zones were detected in the Central Highlands and western Madagascar where 404 

significant proportions of land exhibit annual and biennial burning (Fig. 6A). We also found that most burns in Madagascar 405 

are between June and November except for some regions in the eastern coast and in the north where burns outside this period 406 

dominate (Fig.6B). The quantification of BA by commune showed large differences with values ranging from 5.19 ± 0.09% 407 

(mean ± standard deviation) of land burned annually in a commune in the region of Analanjirofo (northeast Madagascar) to 408 

73.56 ± 3.90% in a commune in the region of Bongolava (central Madagascar) (Fig. 6C). The interannual variability also 409 

showed a large spatial heterogeneity, with the largest differences in the south, particularly in communes in the regions of 410 

Ihorombe and the north of Anosy (Fig. 6D). Analysing the percentage of land burned annually by ecoregions (Table 2), the 411 

spiny thickets were the least burned at 7.36 ± 2.58%, followed by lowland forests (7.62 ± 2.01%). Mangroves and ericoid 412 

thickets exhibited intermediate values of annual burned land. Succulent woodlands (26.41 ± 6.71%), dry deciduous forests 413 

(29.37 ± 2.66%) and subhumid forests (33.78 ± 4.44%, mostly corresponding with the grassy biome in the Central Highlands) 414 

showed the highest percentage of land burned each year. Focusing on the major GLAD land cover types in Madagascar we 415 

found that the less affected classes were the scarcely vegetated areas as well as the dense tree cover class, the last with 1.70 ± 416 

0.32% of land burning annually (Table 2). Intermediate BA values (in percentual terms) were observed in the major wetland 417 

types, zones where tree cover is rising, and semi-arid vegetation. The areas that exhibited tree cover loss not related to fire 418 

between 2000 and 2019 according to the reference land cover types, reached 12.82 ± 1.14% of land burned annually. The 419 

MGBAS2 also detected that the extent of burning reached 15.75 ± 1.60% of croplands, 16.48 ± 2.48% of the open tree cover 420 

and 31.86 ± 2.47% of the dense short vegetation (grassland) annually. 421 
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 422 
Figure 6: Maps of Madagascar showing the number of times that a same area burned between 2016 and 2022 (A), the proportion of 423 
burns within the fire season defined as the period between June and November (B), the proportion of burned land by commune (C), 424 
the interannual variability of burned land by commune (D).  425 
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Table. 2: Mean (± standard deviation) burned area by Olson ecoregions (Olson et al., 2001) and by the land cover types defined by 426 
Hansen et al., (2022). Note that the values for burned area by ecoregions are 2016-2022 averages, whereas the values by land cover 427 
classes are 2020-2022 averages, as the land cover product is based on data up to 2019. 428 

 Burned area 

Ecoregions % of land Km2 

    Madagascar subhumid forests (Central Highlands) 33.78 ± 4.44 67204.48 ± 8835.32 

    Madagascar dry deciduous forests 29.37 ± 2.66 44498.09 ± 4033.34 

    Madagascar succulent woodlands 26.41 ± 6.71 20997.33 ± 5335.42 

    Madagascar ericoid thickets 14.39 ± 4.85 183.28 ± 61.71 

    Madagascar mangroves 13.62 ± 2.41 706.65 ± 125.15 

    Madagascar lowland forests 7.62 ± 2.01 8521.04 ± 2250.08 

    Madagascar spiny thickets 7.36 ± 2.58 3184.24 ± 1117.13 

Land cover classes   

    Dense short vegetation 31.86 ± 2.47 91906.09 ± 6550.13 

    Open tree cover 16.48 ± 2.48 24319.22 ± 2989.51 

    Cropland 15.73 ± 1.60 2289.87 ± 247.33 

    Tree cover loss, not fire (2000-2019) 12.82 ± 1.14 4257.98 ± 371.87 

    Semi-arid 10.76 ± 0.55 3674.26 ± 270.95 

    Wetland dense short vegetation 10.33 ± 0.45 755.67 ± 55.53 

    Wetland tree cover loss (2000-2019) 10.14 ± 0.73 73.54 ± 11.45 

    Built-up 9.63 ± 0.79 261.16 ± 32.97 

    Tree cover gain (2000-2019) 8.48 ± 1.23 321.89 ± 41.41 

    Wetland open tree cover 8.36 ± 0.88 698.24 ± 99.35 

    Wetland tree cover gain (2000-2019) 7.09 ± 1.04 7.52 ± 1.00 

    Wetland sparse vegetation 3.97 ± 0.88 35.81 ± 18.71 

    Wetland dense tree cover 1.92 ± 0.30 8.39 ± 2.46 

    Dense tree cover 1.70 ± 0.32 692.48 ± 150.13 

    Salt pan 0.33 ± 0.08 0.34 ± 0.19 

    True desert 0.04 ± 0.01 0.11 ± 0.06 

  429 
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4 Discussion 430 

We have developed a burned area (BA) database for Madagascar (2016–2022) using Sentinel-2 imagery. This is an important 431 

advancement in fire science as it is the first BA product based on Sentinel-2 for this island apart from FireCCISFD products 432 

that are only available for 2016 and 2019 (Roteta et al., 2019; Chuvieco et al., 2022). In the case of Madagascar, the need of 433 

this product was imperative, as using Sentinel-2 imagery we have detected around four times more BA than reported using 434 

other satellites. This significant difference should not be omitted when studying fire whether for data records and statistical 435 

purposes (Mahood et al., 2022; Andela et al., 2019), analysis of fire impacts (Alonso-González and Fernández-García, 2021; 436 

Fernández-García and Alonso-González, 2023) or landscape dynamics potentially driven by fire such as forest loss (Hansen 437 

et al., 2022). Likewise, the new estimates provided here might be useful to decrease the currently high uncertainties in the 438 

estimates of carbon emissions due to fire (Liu and Yang, 2023). 439 

 440 

The validation analyses of our product showed similar accuracy estimates to other Sentinel-2 BA products in tropical regions 441 

such as the FireCCISFD developed for Sub-Saharan Africa for two years (Roteta et al., 2019; Chuvieco et al., 2022), or the 442 

product developed for Indonesia for 2019 (Gaveau et al., 2021). However, some advantages or strong points of our product 443 

should be highlighted when compared with other Sentinel-2 BA products. First of all, our database is the first time series of 444 

Sentinel-2-derived BA data over a large region, whereas former products are available for a single year or for two years (Roteta 445 

et al., 2019; Gaveau et al., 2021; Chuvieco et al., 2022). Second, the algorithm we used is fully consistent over time, thus 446 

facilitating the comparability of seven years of data. This enables not only monitoring over time but also analyses such as the 447 

stability of BA values, fire frequency, and the calculation of other fire regime attributes. Third, our database is fully 448 

independent from coarse-resolution sources, unlike the FireCCISFD11 and FireCCISFD20, which only map those tiles with 449 

hotspots detected by MODIS or VIIRS, respectively and low cloud cover (Roteta et al., 2019; Chuvieco et al., 2022), thus 450 

leading to large unmapped regions that might have BA detectable by Sentinel-2 (see Fig. S2, as well as Figs. 1 and 2 in Ramo 451 

et al., 2021). It is important to note that this advantage of our product is not reflected in our validation results because of a 452 

temporal and spatial reasons. Thus, the generation of long temporal reference units necessitates a focus on the dry season 453 

period, thus avoiding January to March, where unmapped areas predominate in the former Sentinel-2 based products. In 454 
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addition, the reference units are limited in number and randomly distributed, with scarce representation of areas with absence 455 

of MODIS or VIIRS hotspots for the validation period. 456 

 457 

Nonetheless, the Sentinel-2 BA products largely outperformed coarse-resolution products, which exhibited higher omission 458 

errors for Madagascar than the values reported for global validations (e.g. Padilla et al., 2015; Boschetti et al., 2019; Lizundia-459 

Loiola et al., 2020; Franquesa et al., 2022a; 2022b). The great outperformance of Sentinel-2 products over coarse-resolution 460 

products (MODIS- and Sentinel-3-based) can be attributed to the high prevalence of small fire patches which cause the 461 

attenuation of BA signals at pixel sizes ≥250 m (Ramo et al., 2021; Franquesa et al., 2022a), as well as to fire shapes, since 462 

errors of coarse-resolution products increase as patches are smaller and less compact (Campagnolo et al., 2021; Franquesa et 463 

al., 2022a). Both aspects can be particularly relevant in complex landscapes such as those in many parts of Madagascar, where 464 

a rough topography predominates with a high density of valleys and ridges, and fine-grained patchy peasant landscapes. There, 465 

fires with sizes assumed to be within a single or a few coarse pixels usually extend over numerous pixels where burned and 466 

unburned areas mix, magnifying the mixing between burned and unburned spectral signals. This is not only because of the 467 

patchy landscape but also because of the burning strategies of Madagascar’s inhabitants who burn the landscape in a rotational 468 

way over time and space to fit their own interests (Kull, 2004). There are options to address the challenge of getting BA 469 

estimates when there are different spectral signals (burned and unburned) within same coarse-resolution pixels, such as 470 

applying spectral unmixing methods (Quintano et al., 2005), or statistical approaches that combine the detected BA with other 471 

variables such as active fires (van der Werf et al., 2017), landscape fragmentation or social variables to refine BA data 472 

(Fernández-García and Kull, 2023). However, the desirable alternative to solve this limitation is the direct use of higher 473 

resolution imagery. 474 

 475 

In addition to comparing our estimates with the coarse-resolution sensors mentioned above, we have also compared our 476 

estimates with those obtained from Landsat imagery. Landsat-derived BA showed underestimations and errors comparable to 477 

that from coarse-resolution imagery. Landsat missions started in 1972 and have been used to characterise multiple landscape 478 

and land-use change variables for decades. In relation to fire, GABAM is the only available Landsat database at the global 479 
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scale (the only one covering Madagascar) (Long et al., 2019), although several regional products are available for the 480 

Conterminous United States (Hawbaker et al., 2020), Portugal (Neves et al., 2023), or Chile (Miranda et al., 2022) among 481 

others, generally showing a high accuracy. However, in tropical regions Landsat’s long revisit periods can be a major constraint 482 

to proper BA detection, particularly in areas with high cloud cover and rapid fade of burn scars (Chuvieco et al., 2019). This 483 

is the case of Madagascar where some regions have a cloud cover leading to a near zero probability of having a Landsat cloud-484 

free observation in certain seasons (Ju and Roy, 2008). In addition, the short persistence of BA spectral signals due to 485 

vegetation regrowth is another limitation (Franquesa et al., 2022b). In the grassy biome, which is the dominant land cover in 486 

the island, the persistence of BA signals in MODIS imagery has been estimated in between 16 and 48 days, and in the tropical 487 

forest the 80.5% of the BA has persistence under 32 days in MODIS imagery (Melchiorre and Boschetti, 2018) that might 488 

vary depending on post-burn weather conditions (Franquesa et al., 2022b). Although the limitations of Landsat are very 489 

different from those from MODIS or Sentinel-3, we found GABAM estimates similar to those from coarse-resolution sensors 490 

in Madagascar. 491 

 492 

The direct analysis of our BA product showed the heterogeneous burning patterns in Madagascar as reported in the literature 493 

and previous analyses using remote sensing (Kull, 2004; Andela et al., 2017; Frappier-Brinton and Lehmann, 2022; Phelps et 494 

al., 2022), with the highest values of burned land in central Madagascar. We found an insignificant extent showing sub-annual 495 

recurrence levels thus indicating the suitability of developing annual presence-absence BA data such as GABAM (Long et al., 496 

2019). Moreover, we found that burns concentrate between June and November, except in the east and in the north where 497 

many of the burns were observed out of this period (though one should keep in mind that a detection delay can extend up to 498 

50 days). The spatial and temporal patterns of fire relate strongly to farmers and herders’ uses of fire. As a rough synthesis, 499 

the Central Highlands are dominated by grasslands dotted with cultivated fields, where farmers primarily use fire to meet the 500 

needs of livestock as well as an efficient tool for preparing croplands (Kull, 2004; Goodman, 2022b). Focusing on timing, 501 

early fires in the grasslands have been associated with pasture renewal (replacement of lignified grasses with new nutritious 502 

shoots), woodland protection practices and the control of locust invasions. Pasture fires continue between June and September, 503 

while from October, many fires are related to crop field preparation (Kull, 2004). On the contrary, in the eastern lowlands and 504 



26 
 

in the north, the landscape is dominated by rainforests and agricultural lands. There, fire is more related to shifting cultivation 505 

practices (tavy), where vegetation is cut and allowed to dry, typically between August and October and soon after burned, 506 

before the rainy season (Kull, 2004). Then, the land is cultivated typically between 1-3 years and left in fallow for longer. All 507 

these cyclical practices contribute to explain the BA patterns detected in central and eastern Madagascar, with more burned 508 

land concentrating in grasslands and croplands, and less in tropical rainforests. In relation to the seasonality, the high proportion 509 

of fires after November in the eastern region and in the north is also in agreement with previous work analysing VIIRS hotspots 510 

that detected 80% of fires there between October and December (Frappier-Brinton and Lehmann, 2022). The fraction of land 511 

that burned annually in the dry deciduous forest and succulent woodland ecoregions (west) was quite high, indeed close to the 512 

estimates reached in the open landscapes of the Central Highlands. In the west, pasture maintenance, charcoal production, and 513 

expansion of agricultural land play also a major role, with the tavy practice in the dry tropical forests traditionally following 514 

similar patterns to those in the east, but with earlier burns (Kull, 2004; Scales, 2011; Waeber et al., 2014). In this sense, the 515 

analyses of Frappier-Brinton and Lehmann (2022) already highlighted the exceptionally high and increasing number of fires 516 

detected by VIIRS hotspots in those two ecoregions, with a 32% of the remaining forests being within 500 m of a fire hotspot 517 

in 2016. Our results also found that around 43% of Madagascar’s land did not burn between 2016 and 2022. The unburned 518 

zones were mostly in the arid south (spiny thickets and southern succulent woodlands), in the northwest, and in urban 519 

communes as indicated by coarser-resolution analyses (Andela et al., 2017; Frappier-Brinton and Lehmann, 2022; Phelps et 520 

al., 2022). 521 

 522 

The MGBAS2 has limitations similar to other BA products based on Sentinel-2, which can be related to a still insufficient 523 

spatial and temporal resolution and the absence of images before 2015. In relation to the first, it is important to note that many 524 

croplands in Madagascar are extremely small, with size even smaller than 20 m × 20 m, which might complicate the detection 525 

of some agricultural burns using Sentinel-2. In relation to the temporal resolution, the cloudiness in the east and north led to 526 

average periods between cloud-free Sentinel-2 scenes ranging from 18 to 46 days (Sudmanns et al., 2019). In these regions, it 527 

is probable that many tavy burns are missed, as crops are planted soon after burnings (Kull, 2004). Another limitation of remote 528 

sensing BA products is the difficulty of detecting BA below a forest canopy (surface forest fires) because of the shielding 529 
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effect of vegetation (van der Werf et al., 2017; Fernández-García et al., 2018). These three limitations affect MGBAS2 as well 530 

as the validation data, so fire underestimations might be larger than reported. Computational capacity can also be a limiting 531 

factor when producing and working with Sentinel-2 data, a challenge that can be addressed using cloud computing platforms 532 

such as Google Earth Engine (Chuvieco et al., 2019). Even with the mentioned limitations, Sentinel-2 provides the most 533 

accurate BA estimates among the non-commercial satellites nowadays, and thus we recommend the use of our product for 534 

accurate fire monitoring, carbon emission estimation, land use planning, and ecological studies in Madagascar. We also 535 

encourage the use of Sentinel-2 BA data for accurate trend analysis in the future. In relation to the last recommendation, we 536 

highlight that coarse-resolution underestimations might not be constant over time, as they can be impacted in Africa by an 537 

increased number of undetected small fires over time attributed to ongoing increases in landscape fragmentation (Archibald, 538 

et al., 2011; Archibald, 2016). This plausible inconsistency of errors over time might be relevant as it can contribute to 539 

misleading trend estimates. Future work might attempt to compensate for the historical underestimations from before the 540 

Sentinel-2 era by using modelling methods that can take advantage of the new estimates provided here, similarly to Fernández-541 

García and Kull (2023). Likewise, we encourage advancing the field of BA detection by exploring the possibilities that might 542 

offer the combination of different multispectral imagery to improve temporal resolution (e.g. Landsat and Sentinel-2; Quintano 543 

et al., 2018; Roy et al., 2019), as well as the combination of different sensor types (e.g. by combining multispectral and radar 544 

data; Tanase et al., 2015) to reduce the impact of cloudiness on BA detection and timing in the rainforest (Schulte to Bühne 545 

and Pettorelli, 2017; Belenguer-Plomer et al., 2021). 546 

 547 

Our database represents a significant contribution to several scientific disciplines and to the achievement of the Sustainable 548 

Development Goals (SDGs) by providing critical data that support advancements in science, informed decision-making, 549 

effective management practices, and ultimately environmental conservation and development. In this sense, concerning the 550 

SDG Life on Land, the identification of fire incidence is the initial step in better understanding the actual role of this 551 

phenomenon in Madagascar’s ecosystems, and in characterizing key fire regime attributes such as fire frequency and 552 

seasonality (Bond et al., 2008; Fernández-García et al., 2020; Phelps et al., 2022). These attributes are essential to understand 553 

the relationships between fire, habitats and biodiversity, as well as to identify and implement sustainable fire management 554 
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practices (Ralimanana et al., 2022). Additionally, our database contributes to the SDG Climate Action, by enabling the 555 

quantification of carbon emissions from landscape fires with direct observations instead of the currently used models (Chen et 556 

al., 2023). Accurate BA mapping also facilitates the estimation of pyrogenic carbon forms, which can act as a carbon sink 557 

(Jones et al., 2019; Bowring et al., 2022). Our database further supports advancement in the SDG Good Health and Well-558 

being, as fire smoke is responsible of about 680,000 premature deaths, half of them in Africa (Roberts & Wooster, 2021), as 559 

well as of more than 20% of infant deaths in some regions in Madagascar (Pullabhotla et al., 2023) - surely more if estimations 560 

were based using high resolution BA data. Therefore, accurate BA data could contribute to epidemiology and public health, 561 

and might be useful in assisting for public authorities in identifying critical periods and regions to implement measures to 562 

protect people. A high-resolution database is also essential for further unravelling the extent of fire management practices that 563 

support local livelihoods, mainly agricultural and livestock production, which account for a large proportion of the economy 564 

in Madagascar and sub-Saharan Africa in general (Kull, 2004; Omisore, 2018). Investigating these intricate relationships would 565 

potentially contribute to identify suitable management practices supporting the SDGs No Poverty and Zero Hunger, and their 566 

relationships with biodiversity conservation, climate change, health and well-being in the complex landscapes of Madagascar. 567 

4 Conclusions 568 

Here we develop, validate, intercompare, and analyze a burned area (BA) database for Madagascar covering the period 2016-569 

2022 (MGBAS2). The database, built exclusively with imagery from Sentinel-2A and 2B sensors, constitutes the first time 570 

series of BA data from Sentinel imagery in Africa over a large region, opening multiple analytical possibilities. 571 

 572 

The spatial validation with long temporal reference units revealed high accuracy for the developed product (Dice coefficients 573 

≥79%, omission errors ≤24%, commission errors ≤18%, and a relative bias ≥-8%). Validations also highlighted the need to 574 

use satellite imagery with equal or higher spatial and temporal resolution than Sentinel-2 imagery to avoid significant omission 575 

errors in Madagascar. In this regard, MODIS, Sentinel-3, and Landsat BA data resulted in omission errors larger than 75% and 576 

produced largely biased estimates (at least -64.47% of BA detected). 577 

 578 
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The analyses of the BA data from MGBAS2 showed that between 20 and 30% of Madagascar’s land burns every year, but 579 

heterogeneous burning patterns were detected. Most of the BA concentrates in Central and Western Madagascar. These regions 580 

correspond mostly to the Central Highlands and the dry deciduous forest ecoregion. Likewise, we found that many areas in 581 

these fire-prone regions recurrently burn every few years, mostly between May and November. 582 

Data availability 583 

The MGBAS2 database is publicly available and downloadable at Zenodo (https://doi.org/10.5281/zenodo.8201841; 584 

Fernández-García et al., 2023). The reference long units developed and used in the present work are published in BARD 585 

(https://doi.org/10.21950/YYZNNN; Franquesa et al., 2023). 586 

https://doi.org/10.5281/zenodo.8201841
https://doi.org/10.21950/YYZNNN
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Appendix 587 

 588 
Fig. S1: Regression models between the estimates of the MGBAS2 database and other available burned area products. The analysis 589 
was done with the values of burned land aggregated at 0.25-degree cells. 590 
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  591 
Fig. S2: Burned area (BA) by months in the FireCCISFD11 and FireCCISFD20 products in 2016 and 2019 respectively. Borders of 592 
BA polygons were also coloured in red to highlight the unmapped tiles. Blue squares indicate the location of the reference units. 593 
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Table S1: Burned area detected by MGBAS2 for the period 2016-2022 in Madagascar by years.  594 

Year Burned area 

 % of land Km2 

2016 30.23 178833.46 

2017 24.72 146209.23 

2018 24.72 146196.35 

2019 26.12 154510.52 

2020 24.33 143930.13 

2021 20.45 120980.13 

2022 21.37 126406.09 
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